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Abstract 

Despite significant progress made in snowfall estimation from space, methods utilizing passive 

microwave measurements continue to be plagued by low detectability compared to those that 

estimate rainfall.  This paper presents a hybrid snowfall detection algorithm that combines the 

output from a statistical algorithm utilizing satellite passive microwave measurements with the 

output from a statistical algorithm trained with in-situ data that uses meteorological variables 

derived from a global forecast model as predictors.  The satellite algorithm computes the 

probability of snowfall over land using logistic regression and the principal components of the 

high frequency brightness temperature measurements at AMSU/MHS and ATMS channel 

frequencies 89 GHz and above.  In a separate investigation, analysis of modelled data derived 

from NOAA’s Global Forecast System (GFS) showed that cloud thickness and relative humidity 

at 1- to 3-km height were the best predictors of snowfall occurrence. A statistical logistical 

regression model that combined cloud thickness, relative humidity and vertical velocity was 

selected among statistically significant variants as the one with the highest overall classification 

accuracy. Next, the weather-based and satellite model outputs were combined in a weighting 

scheme to produce a final probability of snowfall output, which was then used to classify a 

weather event as “snowing” or “no snowing” based on an a-priori threshold probability. 

Statistical analysis indicated that a scheme with equal weights applied to the weather-based and 
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satellite model significantly improved satellite snowfall detection. Example applications of the 

hybrid algorithm over continental US demonstrated the improvement for a major snowfall event 

and for an event dominated by lighter snowfall.   

 

 

1. Introduction 

Snowfall prediction remains one of the most difficult challenges in weather forecasting.  

Current precipitation forecasts rely on observations from gauges, radars, and satellites which 

augment those made by numerical weather prediction (NWP) models.  For all types of 

precipitation, each of these data sources has its limitations which become even more serious 

when the precipitation falls in the form of snow. Additionally, different NWP models often 

provide conflicting information regarding snowfall location, extent, and intensity. This fact 

makes it especially important for weather forecasters to have reliable observations to confirm 

model predictions and to infer more accurate storm information for the forecasting areas.  

With broad and unobstructed coverage, satellite observations provide an excellent alternative 

to ground based gauge and radar data.  Routine satellite snowfall detection from visible or 

infrared measurements has a major limitation in that it is very difficult to distinguish between 

precipitating and non-precipitating high-latitude clouds during winter.  Progress has only been 

made recently (Staelin and Chen, 2000; Chen and Staelin, 2003; Kongoli et al., 2003; 

Skofronick-Jackson et al., 2004; Surussavadee et al., 2012; Liu and Seo, 2013; Kongoli et al., 
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2015) when high frequency passive microwave instruments such as the Advanced Microwave 

Sounding Unit (AMSU) began flying on board polar orbiting satellites.  Kongoli et al. (2003) 

presented the first operational snowfall detection algorithm using AMSU measurements (Ferraro 

et al., 2005).  Detection of snowfall was based on a decision tree classification algorithm using 

measurements in the microwave window, water vapor and oxygen absorption regions.  The 

underlying assumption was that for warmer and more opaque atmospheres, scattering by 

snowfall-sized ice particles decreases the brightness temperatures at the high frequency channels 

(89 GHz and above), and this scattering signature can be detected using opaque (oxygen and 

water vapor absorption) and window channels in combination.  For colder and less opaque 

atmospheres, retrievals were considered too noisy due to surface effects, and thus were not 

performed.  

Recent advances in space-borne radar systems and in particular the Cloud Profiling Radar 

(CPR) on board NASA’s CloudSat satellite led to new insights into winter precipitation and the 

development of new and improved satellite passive microwave snowfall detection algorithms.  

Liu and Seo (2013) developed a probability-based statistical method from MHS channel 

measurements using Cloudsat radar data as “ground truth”.  A new finding was that on most 

occasions, the brightness temperatures are higher under snowfall than no snowfall conditions, 

likely due to emission by cloud liquid water which masks the scattering signal.  Motivated by the 

results of this study, Kongoli et al. (2015) analyzed snowfall signatures using measurements 

from the Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-
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orbiting Partnership (SNPP) and in-situ data as ground truth.  They also found that brightness 

temperatures at ATMS high frequency channels are significantly higher for snowfall, but only in 

colder weather conditions.  In warmer weather, brightness temperatures typically decreased for 

snowfall compared to no-snowfall, likely due to the scattering signal dominating the response.   

A two-step probability-based snowfall detection algorithm was developed and trained with in-

situ data for a colder and a warmer weather regime, using the AMSU or ATMS limb corrected 

oxygen absorption channel brightness temperature at 53.6 GHz (referred to hereafter as TB53L) 

as temperature proxy to define each weather regime. The colder snowfall regime retrievals 

extended to conditions associated with TB53L down to 240 Kelvin, which corresponds to a near 

surface temperature at about -15 0C.  For TB53L less than 240 Kelvin retrievals were deemed 

indeterminate due to the lack of a sufficiently large and representative training sample to train 

and evaluate the algorithm in these very cold weather conditions.  Figure 1 presents an example 

using the threshold-based Kongoli et al., 2003 and the probability-based Kongoli et al., 2015 

snowfall detection algorithms.  Shown on the map are snowfall rates retrieved using a 1DVAR-

based physical inversion scheme (Meng et al., 2017) applied over snowfall detected areas.  The 

new snowfall detection algorithm retrieves a larger fraction of snowfall including over 

“indeterminate” colder areas (denoted as white) and at a lower false alarm.   

Despite the advances mentioned above, space-based estimation continues to be a highly 

difficult problem in modern hydrometeorology (Levizzani et al., 2011).  Specifically, there are 

inherent limitations to achieving a high snowfall detectabilty from satellite passive microwave 
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measurements.  Evaluation of the new algorithm of Kongoli et al. (2015) has revealed its 

performance can degrade for light snowfall, snowfall generated from shallow clouds and 

significant snowfall associated with a weak scattering signal.  One strategy to improve satellite 

retrievals is development of algorithms that exploit information from modeled meteorological 

variables.  In this paper, a hybrid snowfall detection scheme is presented that explicitly blends 

satellite snowfall output with that estimated from ancillary meteorological data derived from a 

global forecast system.  To this end, an algorithm using forecast parameters is trained with in-

situ data to compute the probability of snowfall, which is then combined with that of the satellite 

in a weighting scheme to produce the final output.  The paper is organized as follows. Section 2 

describes the satellite, weather-based and the proposed hybrid algorithm.  Section 3 details the 

data used: in-situ, satellite and modeled data, as well as the collocation methodology. Section 4 

presents and discusses the results for the weather-based, satellite and the hybrid model outputs.   

Finally, summary and conclusions are provided in section 5. 

 

 

2. Methods 

2.1 Satellite Snowfall Detection 

The satellite snowfall detection algorithm (hereafter referred to as “satellite SD algorithm”) is 

described in detail in the study of Kongoli et al. (2015). Here we provide a general outline.  The 

satellite SD algorithm computes the probability of snowfall over land using logistic regression 
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and the principal components (PCs) of the high frequency brightness temperature measurements 

at AMSU/MHS and ATMS channel frequencies 89 GHz and above.  

The probability of snowfall is expressed with the logistic regression function: 

Ln(P /(1-P)) = a0 + a1*PC1 + a2*PC2 +a3*PC3 + a4*cosLZA           (1) 

Where P is probability of snowfall, cosLZA is the cosine of the zenith angle, and PC1, PC2 and 

PC3 are the first three PCs.  Each PC is computed as a linear combination of the brightness 

temperatures multiplied by fixed weights derived in algorithm training. The probability of 

snowfall P is computed as: 

P = Exp(B) / (1 + Exp(B)          (2) 

where B is the expression on the right side of Eq. 1. The oxygen absorption channel at 53.6 GHz 

(AMSU-A channel 5 and ATMS channel 6) is utilized as temperature proxy to define two 

retrieval regimes: a colder and a warmer one.  To optimize retrievals, the principal component 

weights and partial logistic regression coefficients are trained with in-situ station observations of 

snowfall and no-snowfall occurrence and pre-computed separately for the warmer (TB53L 

between 244 and 252 Kelvin) and colder (TB53L between 240 and 244 Kelvin) weather regimes.  

In the operational application of the algorithm, NWP-derived land surface temperature (LST) is 

used to filter out liquid precipitation in the form of rain. This is consistent with the algorithm 

training against only snowfall and no-precipitation cases during the winter. This algorithm is a 

major advancement compared to the previous version of Kongoli et al. (2003) in that it allows 
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snowfall retrievals in colder environments down to near surface temperatures at about -150 C.  In 

addition, the statistical probabilistic approach is a more robust method than the previous decision 

tree approach.  A snowfall rate algorithm (Meng et al., 2017) is applied to snowfall-detected 

scenes to retrieve cloud ice water path and particle effective diameter, which are then used to 

estimate surface snowfall rate (Figure 2). These cloud properties are retrieved using an inversion 

method with an iteration algorithm and a two-stream Radiative Transfer (RT) Model (Yan et. al, 

2008). Next, snow particle terminal velocity is computed (Heymsfield and Westbrook, 2010) and 

snowfall rate by numerically solving a complex integral.  

2.2 Weather-based Snowfall Detection 

A similar probabilistic logistic regression approach was adopted for snowfall detection using 

forecast meteorological variables as predictors (hereafter referred to as “weather-based SD 

algorithm”).  The practical utility for choosing to develop a statistical algorithm from weather 

forecast data is to improve satellite model output (from any current or future satellite) in 

operational applications by blending it explicitly with a weather-based model output in a simple 

weighting scheme.  Experience with satellite passive microwave instruments and theoretical 

investigations (e.g., Munchak and Johnson, 2013) indicate that the detectability of precipitation 

over snow cover surfaces deteriorates significantly compared to bare land.  In addition, snowfall 

analysis and estimation from physical parameters would be desirable in and of itself, for 

providing alternative retrieval strategies and insights into the relative importance of these 

parameters in snowfall processes.  Note that this type of investigation has mostly focused on 
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rainfall. For instance, the relationship between cloud top temperature and rainfall has been 

widely used in the development of rain rate retrieval algorithms from satellite infrared 

measurements (e.g., Arkin et al., 1987; Vinzente et al., 1998).  Cloud top temperature is a proxy 

for cloud thickness, the latter more physically related to rain rate.  Yu et al. (2016) explored the 

influence of several environmental parameters on both rain and snowfall estimations and found 

that relative humidity and vertical velocity are related to the occurrence of snowfall, more so 

than that of rainfall.   On the other hand, experience with the AMSU/MHS and ATMS satellite 

algorithms have shown that cloud thickness computed from forecast data is an efficient filter in 

reducing false alarms (Meng et al., 2017).  Therefore, to develop the algorithm, the forecast 

variables considered include relative humidity at 2-m, 1-km, 2-km and 3-km height, cloud 

thickness, cloud top height, cloud top temperature, and vertical velocity at 1-km, 2-km, and 3-km 

height.   

2.3 Hybrid Algorithm 

The rationale for the hybrid algorithm is to compute an output as a weighted average of 

outputs from the satellite and the weather-based SD algorithms: 

 

PRhyb = Wsat* PRsat + Wwea*PRwea   (3) 

 

This article is protected by copyright. All rights reserved.



10 
 

Where PR refers to the probability of snowfall, W refers the weight, and hyb, sat and wea refer to 

the hybrid, satellite and the weather-based SD algorithms, respectively.  Note that Wsat +Wwea = 

1.  Equation 3 may therefore be written as: 

PRhyb = f*PRsat +(1-f)* PRwea  (4) 

 

Where f = Wsat/Wwea.  Presented with a set of brightness temperatures and ancillary data, for a 

specific weighting parameter f, snowfall probabilities for the satellite and the weather model are 

computed based on Eq.4.  Next, the resulting probability value (PRhyb) is assigned to “snowfall” 

if it is greater than an a priori threshold probability.  

3. Datasets and Collocation Methodology 

3.1 In-situ Ground Truth Data 

In-situ ground truth data for algorithm training and evaluation were obtained from the 

Quality Controlled Local Climatology Data (QCLCD) product distributed by NOAA’s National 

Climate Data Center (NCDC, www.ncdc.noaa.gov). The data consists of hourly, daily, and 

monthly summaries for approximately 1,600 U.S. locations. Data are available beginning 

January 1, 2005 and continue to the present.  In this study the hourly dataset was used, which 

includes measurements of 2-m surface temperature, wet bulb temperature, pressure, relative 

humidity, visibility and present weather.  The present weather contains information on the type 

of precipitation, which was used for (ground truth) classification of cases into falling snow or no-
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precipitation. Reported in this dataset is also hourly snowfall accumulation in liquid water 

equivalent.  

3.2 Satellite Data 

The satellite SD algorithm utilizes measurements from ATMS or the AMSU-A/MHS 

pair.  Presented in this study are quantitative analysis and results for the algorithm based on 

ATMS and only a qualitative assessment of the AMSU-A/MHS-based model.   

ATMS is the successor of AMSU-A and MHS.  It is aboard the Suomi National Polar-

orbiting Partnership (S-NPP) satellite. It will also be the only microwave radiometer aboard the 

future Joint Polar Satellite System (JPSS) satellites.  Table I presents ATMS channel 

characteristics, including center frequencies, noise equivalent temperature (NEDT), horizontal 

spatial resolution and corresponding AMSU channels. ATMS observes millimeter-wave spectra 

at 22 frequencies. Channels 1–15 observe 53-GHz oxygen and 23-GHz water vapor absorption 

bands and resemble AMSU-A channels. Channels 16–22 observe near and below the 183-GHz 

water vapor resonance and resemble AMSU-B (MHS) channels.  As shown, ATMS’s horizontal 

spatial resolution at nadir is 75 km for channels 1 and 2, 33 km for channels 3 – 16, and 15 km 

for channels 17 – 22.  AMSU’s spatial resolution at nadir is 50 km for channels below 60 GHz 

and 15 km otherwise. The improvements of ATMS over AMSU include 1) about 400 km wider 

swath reducing gaps between orbits; 2) the addition of observation at 51.76 GHz providing more 

information about surface, stratiform precipitation, and tropospheric temperature profiles; 3) the 

addition of observation at 183.31±1.8 and  ±4.5 GHz providing more information about water 
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vapor and precipitation; 4) better spatial resolution for 50-GHz channels, that is, from ~50 to ~33 

km at nadir; and 5) Nyquist spatial sampling for channels below 90 GHz, which enables 

discretionary image sharpening. ATMS surface channels near 23.8, 31.4, and 88.2 GHz have 

lower spatial resolution than those of AMSU. 

3.3 GFS Data 

Ancillary geophysical data were obtained from the Global Forecast System (GFS), the global 

operational NWP model of NOAA’s National Centers for Environmental Prediction (NCEP).   

GFS model is run four times daily and generates output out to 192-hour at 3-hour increments.  

For this application, the 1 degree spatial resolution GFS output was utilized. Variables obtained 

include layer relative humidity at 2 m, 1 km, 2 km and 3 km height, cloud thickness, cloud top 

and base heights, cloud top and base temperatures, and vertical velocity at 1 km, 2 km, and 3 km 

height.  Cloud thickness was computed utilizing GFS relative humidity information.   An 

atmospheric level is considered to have cloud if relative humidity is at or above 89%.  This 

threshold is consistent with the critical relative humidity value used in the GFS microphysics 

scheme for one-degree resolution at mid-latitude locations (Meng et al., 2017).  

 

3.4 Data Matching Methodology 

A dataset was compiled matching satellite, in-situ ground truth and GFS data.  The ground 

truth in-situ data contained information on observed snowfall occurrence (snowfall vs. no-

snowfall) that was needed for algorithm training and evaluation.  Periods during the winter 
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seasons between 2014 and 2016 were selected to sample snowfall events over continental United 

States.  First, ATMS swath satellite brightness temperature data were matched to GFS data to a.  

compute the probability of snowfall output by application of the satellite SD algorithm, and b. 

obtain GFS variables for the development of the weather-based SD algorithm.  Next, the 

matched satellite and GFS data were collocated with in-situ hourly station observations to 

classify each case as “falling snow” or “no snowfall”.   Maximum time offset between the 

satellite and station-collocated pairs was set at 30 minutes with satellite time stamp following 

station time.  Maximum separation distance between satellite footprint centroid and station 

location was set at 25 km.  Only the closest station within the 25 km distance from the satellite 

footprint centroid was matched.  Another important consideration in collecting the ground truth 

snowfall sample from in-situ observations was the selection of snowfall cases in colder weather 

conditions, as indicated by station 2 m surface temperature or the ATMS or AMSU-A limb-

corrected brightness temperature at 53.6 GHz.  Examination of snowfall observations revealed 

that lighter snowfall with hourly liquid water equivalent accumulations reported as “trace” was a 

significant fraction.  The minimum liquid water equivalent rate measured and reported is 0.25 

mm hr-1 and thus rates below this value are reported as “trace”.  For colder weather 

corresponding to 53.6 GHz limb-corrected brightness temperatures 244 K and below, most of the 

snowfall sampled consisted of “trace” snowfall cases.  A case with “trace” snowfall 

accumulation was retained in the snowfall sample when it was also flagged as “snowing” at the 

time of observation. “No-snowing” cases selected were only those that had no snow or rain 
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reported at observation time and the liquid water equivalent rate reported was zero.  In other 

words, a case with “trace” amounts of hourly accumulation that was not flagged as “snowing” at 

observation time (present weather was other than “snow” or “rain”) was not selected in the 

ground truth snowfall sample. However, a “snowing” case (present weather was flagged as 

“snowing”) that had zero accumulations of hourly snowfall was retained in the ground truth 

snowfall sample.  The zero-precipitation “snowing” cases were a significant fraction that if 

removed would have resulted in a much smaller ground truth snowfall sample.  “Snowing” cases 

with 2-m surface temperature at 2°C and above were removed from the snowfall sample due to a 

higher likelihood of being a rainfall case. These criteria were applied as additional quality 

control checks to minimize ambiguity in ground truth data as much as possible.  The resulting 

match-up sample contained over 43,000 cases in total, with 37% consisting of “snowing” cases.       

4. Results and Discussion 

4.1 Weather-based SD Algorithm 

Logistic regression results for the modeled weather variables as predictors and ground 

truth snowfall occurrence as the response indicate that cloud thickness gives the highest overall 

classification accuracy of snowfall versus no snowfall at 77%, followed by 1 km and 2 km 

relative humidity at 76%, 3 km relative humidity at 73% and cloud top height at 70%.  Overall 

accuracy was computed as the ratio between the correct number of cases classified (snowfall + 

no snowfall) and the total count of cases considered, for a threshold probability of 0.5. Vertical 

velocity and cloud top temperature were significant (P-value less than 0.001) but each gives a 
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lower overall classification rate.  Interestingly, cloud top temperature has the highest (negative) 

correlation with modeled snowfall rate (greater than 0.1 mm hr-1) retrieved from ATMS (R =-

0.25) and measured surface precipitation rate greater than 0.25 mm hr-1 (R =-0.11).  Cloud 

thickness comes in second in the magnitude of the correlation value (positively correlated with 

modeled and measured snowfall rate).  

Figure 3 displays the distribution of cloud thickness for the snowfall and the no snowfall 

sample.  Consistent with regression results, one can visually distinguish the marked difference in 

the shape of the distributions, e.g., the much larger fraction of snowfall cases associated with 

thicker clouds compared to the no-snowfall sample.  This also results in a large difference in the 

mean and median values of cloud thickness between the snowfall and the no snowfall sample.  

Figure 4 displays histograms of the relative humidity distribution at 1 km, 2 km and 3 km height 

for the snowfall and no snowfall sample.  The snowfall sample is associated with a larger 

fraction of high relative humidity than the no-snowfall sample.  Figure 5 displays same 

distributions of relative humidity as Figure 4, but for thinner clouds (less than 3000 m in 

thickness).  For the 3 km relative humidity, the shape of the distributions between the snowfall 

and no snowfall sample becomes closer than for the 1 km and 2 km relative humidity, suggesting 

that for thin clouds 1 and 2 km relative humidity parameters are more important in distinguishing 

between snowfall and no snowfall.  Figure 6 shows the histograms of cloud top temperature for 

the snowfall and the no snowfall sample.  Cloud top temperature mean value for the snowfall 

sample is -18.2 0C and the distribution is nearly bell-shaped.  On the other hand, the mean value 
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for the no-snowfall sample is higher than that of the snowfall, and the distribution is also nearly 

bell shaped except for the peak of the distribution centered at 1 0C.      

Table II gives logistic regression model results using the stepwise elimination method.  

Shown in the table are the variables selected, partial regression coefficients, the Z-test statistic 

values and the significance (P-values).  The selected model variables are cloud thickness, the 2 

m, 1 km, and 3 km level humidity, and the 2 km and 3 km level vertical velocity. Other 

combinations of variables and models were considered in logistic regression, with performance 

results not better than the one presented here.  Table III presents performance statistics of the 

selected model: the confusion matrix, the probability of snowfall detection (POD), the false 

alarm rate (FAR), the overall classification rate, and the Heidke Skill Score (HSS).    POD was 

computed as the fraction of correctly predicted snowfall cases (out of all the snowfall cases), 

FAR as the fraction of incorrectly predicted no-snowfall cases (out of all the no-snowfall cases). 

Heidke Skill Score (HSS; Wilks, 2011) was computed using the following: 

HSS = 2(ad-bc)/[a+c)(c+d) + (a+b)(b+d)]                 (5) 

Where a is the number of events correctly forecasted, in our case, snowfall,  d is the number of 

no-events correctly forecasted, in our case, no-snowfall, c is the number of no-events incorrectly 

forecasted, in our case, no-snowfall, and d is the number of events incorrectly forecasted, in our 

case, snowfall.    A negative HSS value means that the model does worse than a chance forecast, 

and a positive value between zero (no skill) and 1 (perfect skill) indicates progressively better 

skill than the chance forecast.  Overall accuracy and HSS are moderately high at 79% (with a 
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threshold classification probability of 0.5) and 0.55, respectively.  POD, FAR, overall 

classification rate and HSS depend on the selected threshold probability value: A higher 

threshold probability will always lower both FAR and POD, but may or may not lower overall 

classification or HSS. A threshold probability of 0.6, for instance, gives the following: POD = 

0.62, FAR = 0.12, overall classification = 0.78 and HSS = 0.52.   

 

4.2 Hybrid Model and Comparisons with the Satellite SD Algorithm 

An important parameter in the hybrid algorithm is the weighting coefficient f in eq. 4, 

which measures the relative uncertainty information of the satellite output with respect to the 

model forecast.  A rigorous analysis and estimation of this parameter is not the subject of this 

study. Monitoring of the hybrid algorithm performance suggests that a weighting scheme with f 

varying between 0.4 and 0.6 produces improved results over continental US across all satellite 

platforms carrying ATMS (NPP) or the AMSU/MHS pair (NOAA-18, -19, and Metop).  Table 

IV presents statistical results of the ATMS satellite and the hybrid algorithm, the latter using a 

weighting coefficient f equal to 0.5, i.e., when GFS-based and satellite outputs have the same 

uncertainty information.  Overall classification rate is improved from 70% to 75% and HSS from 

0.23 to 0.44. It is important to emphasize that the statistical results reported here are computed 

from comparisons with in-situ measurements where light snowfall cases (reported as “trace” or 

with zero surface accumulation) were dominant.    
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Figures 7 and 8 demonstrate the improvement of the hybrid model for a snowfall event 

on February 5, 2014 and more recently on 31 January, 2017 (Figures 9 and 10). The satellite 

algorithm parameters  (PC scores and partial logistic regression coefficients) for ATMS (Figure 

7) and AMSU-MHS pair (Figure 9) have been pre-computed separately from training with in-

situ data, whereas the weather based algorithm applied to each satellite instrument is the same as 

the one reported here.  As shown on Figure 7, a considerable snowfall area of a significant event 

was missed by the satellite algorithm but captured by the hybrid algorithm.  This was a major 

snowfall event heading Northeast of US and moving over antecedent snow-cover.  Snow cover 

maps generated from NOAA’s Interactive Snow and Ice Mapping System (IMS; Helfrich et al., 

2007) before (top images) and after (bottom image) 5 February, 2014 are shown in Figure 8. 

Visual inspection of these maps suggests that areas hit by the snowstorm on February 5 were 

already snow-covered on 4 February, 2017.   

The snowfall event depicted in Figure 9 was less extensive, consisting mostly of lighter 

snow falling over snow-covered land as suggested by IMS snow cover maps over continental US 

prior to and following the event (Figure 10).   Visual comparison between the satellite snowfall 

detected area and that from the radar reveals a slight displacement: missed satellite snowfall on 

one edge and false alarm on the other.  These satellite mis-classification errors could have 

occurred right after the start (missed snowfall) and after the end of a moving snowstorm (false 

new snow on the ground), and both these areas are correctly classified by the hybrid algorithm.  

Summary and Conclusions 
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Snowfall prediction remains one of the most difficult challenges in weather forecasting.  

This paper presents a hybrid snowfall detection algorithm that weights the outputs from a 

statistical algorithm utilizing satellite passive microwave measurements and from a statistical 

algorithm based on ancillary weather data derived from a global forecast model.  This approach 

is taken to improve the detectability of satellite snowfall and the utilization of satellite methods 

in weather and hydrological forecasting.    The satellite algorithm computes the probability of 

snowfall over land using logistic regression and the principal components of the high frequency 

brightness temperature measurements at AMSU/MHS and ATMS channel frequencies 89 GHz 

and above.   This algorithm is a major advancement compared to a previous version in that it 

allows snowfall retrievals in colder environments, down to near surface temperatures at about -

150 C. Algorithm parameters consisting of principal component weights and partial regression 

coefficients have been pre-computed in previous studies using in-situ data for training.   A 

similar logistic regression method is applied to train a weather-based algorithm, with 

meteorological variables derived from NOAA’s Global Forecast System (GFS) as predictors. In-

situ data are obtained from the Quality Controlled Local Climatology Data (QCLCD) hourly 

product distributed by NOAA’s National Climate Data Center. Specifically,  GFS-derived  

variables considered were cloud thickness, cloud top height, cloud top temperature,  atmospheric 

humidity at 2-m, 1-km, 2-km, and 3-km height, and vertical velocity at 1-km, 2-km, and 3-km 

height.  Logistic regression analysis showed that cloud thickness and relative humidity were the 

parameters with the largest impact on classification accuracy. A statistical logistical regression 
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model that combined cloud thickness, humidity and vertical velocity was selected among 

different statistically significant combinations as the one maximizing accuracy, with an overall 

classification rate at 79% and a Heidke Skill Score of 0.55.  Next,  weather-based and satellite 

model output expressed as probability of snowfall were combined in a simple weighting scheme 

to produce a final probability of snowfall output, which was then used to classify an event as 

“snowing” based on a a priori threshold probability. Statistical analysis indicated that a scheme 

with equal weights applied to the weather-based and satellite model significantly improved 

satellite snowfall detection. Example applications of the hybrid algorithm over continental US 

demonstrated the improvement for a major snowfall event and for an event dominated by lighter 

snowfall.  Future work is expected to extend retrievals over very cold snowfall conditions, e.g, in 

areas over Alaska that has temperatures lower than in Continental US, as well as to refine the 

weighting scheme.         
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List of Figures 

Figure 1.  ATMS snowfall rate (top left) applied to the Kongoli et al. (2003) version of the snowfall 
detection algorithm (left) and the new more advanced probability-based version of Kongoli et al. (2015) 
(top right).  The bottom image is the radar-based precipitation  type over US.   The “white” coded area 
on the top left image denotes weather associated with TB53L less than 245 Kelvin over which snowfall 
retrievals were not performed.  The new algorithm extends retrievals over these areas and performs 
better overall.  

Figure 2 (from Laviola et al.,2015). Left: new ATMS SD algorithm, and right: Inversion of Radiative  
Transfer (RT) module in the snowfall rate algorithm of Meng et al., (submitted). Limp-corrected channel 
6 ATMS brightness temperature (TB53L) is used as proxy for surface temperature. The colder regime 
extension (TB53L down to 240 K or approx. -15 0C surface temperature) allows colder and lighter 
snowfall retrievals than the heritage.     

Figure 3.  Distribution of GFS cloud thickness (m) over the no snowfall  and snowfall samples. The 
vertical red and green lines represent the median and mean values of cloud thickness, respectively.  

Figure 4.  Distribution of GFS relative humidity over the no snowfall and snowfall  samples. The vertical 
red and green lines represent the median and mean values of relative humidity, respectively.  

Figure 5.  Distribution of GFS relative humidity over the no snowfall and snowfall  samples for cloud 
thickness less than 3000 m. The vertical red and green lines represent the median and mean values of 
relative humidity, respectively. 

Figure 6.  Distribution of GFS cloud top temperature  over the no snowfall and snowfall  samples. The 
vertical red and green lines represent the median and mean values of cloud top temperatures, 
respectively. 

Figure 7.  Snowfall rate from ATMS satellite (top left) and the hybrid (top right) snowfall detection 
algorithms, the latter driven by GFS derived variables, during a major snowfall event  in February 2014.  
The bottom image is the near coincident radar reflectivity. The noted oval areas show legitimate snowfall 
that was missed by the satellite algorithm but captured by the hybrid algorithm.  

Figure 8.  Snow on the ground  over continental US from the NOAA’s Interactive Multi-Sensor and Ice 
mapping System (IMS) before (top images) and after (bottom image) February 5, 2014.   

Figure 9. Snowfall rate from satellite (top left) and the hybrid (top right) snowfall detection algorithm 
from AMSU-MHS pair on NOAA-19 satellite and GFS data, respectively. The bottom image is the near 
coincident radar reflectivity.  

Figure 10. Snow on the ground over continental US from the NOAA’s Interactive Multi-Sensor and Ice 
mapping System (IMS) before (top) and after  (bottom)  January 31, 2017.   
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# Center frequencies for channels 16 and 17 are 89 and 157 GHz respectively. 

*Integration times for ATMS channels 1-16 are one ninth those of AMSU. 

+AMSU resolution at nadir is 50 km below 60 GHz ad 15 km otherwise.  

 

 

Table II: Logistic regression coefficients of the weather  model 

Variable Estimate Std. Err. Zstat P-value 

Cthick 0.000634 1E-05 -43.52 <0.0001 

Hum1 0.032457 3E-05 25.19 <0.0001 

Hum3 -0.005273 9E-04 35.95 <0.0001 

V2 0.584000 8E-04 -6.601 <0.0001 

V3 -0.717000 6E-05 10.22 <0.0001 

Hum 0.027847 6E-05 -11.41 <0.0001 

Intercept -6.380459 0.002 17.24 <0.0001 

 

Table III. Performance statistics of the weather, satellite and the hybrid snowfall detection model 

Model/Statistics FAR POD Overall Heidke 
Weather1 0.17 0.72 0.79 0.55 
Weather2 0.12 0.62 0.78 0.52 

1 Threshold probability = 0.5 
2 Threshold probability = 0.6 

 

Table IV. Performance statistics of the satellite and the hybrid snowfall detection model for a threshold 
probability = 0.5 

Model/Statistics FAR POD Overall Heidke 
Satellite 0.18 0.41 0.70 0.23 
Hybrid 0.11 0.52 0.75 0.44 
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A Hybrid Snowfall Detection Method from Satellite Passive Microwave Measurements and 

Global Forecast Weather Models 

*Cezar Kongoli, Huan Meng, Jun Dong, Ralph Ferraro 

 The paper presents a hybrid approach to satellite snowfall detection that can improve the 
performance of satellite-based methods and increase their utility in operational weather 
and hydrological forecasting;   

 It presents an analysis and new insights into modeled meteorological variables that are 
related to snowfall occurrence; 

 It presents a weather-based snowfall detection algorithm using modeled data from a global 
weather forecast system. 
 
                           Satellite Algorithm                                         Hybrid Algorithm 
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Table I: ATMS and AMSU/MHS channel characteristics 

 

ATMS AMAU+ 

Ch. Frequencies 
(GHz) 

Predicted 
NE” T (K)* 

Nadir (km) Ch. Measured 
NE” T (K)* 

1 23.80 0.28 75 1 0.21 

2 31.40 0.35 75 2 0.26 
3 50.30 0.42 33 3 0.22 

4 51.76 0.31 33 - - 
5 52.80 0.32 33 4 0.14 

6 53.596±0.115 0.35 33 5 0.15 
7 54.40 0.32 33 6 0.15 

8 54.94 0.32 33 7 0.13 

9 55.50 0.35 33 8 0.14 
10 f0=57.290344 0.49 33 9 0.24 

11 f0±0.217 0.67 33 10 0.25 
12 f0±0.3222±0.048 0.70 33 11 0.28 

13 f0±0.3222±0.022 1.06 33 12 0.40 
14 f0±0.3222±0.010 1.45 33 13 0.54 

15 f0±0.3222±0.045 2.40 33 14 0.91 

16 88.2 0.29 33 16# 0.35 
17 165.6 0.44 15 17# 0.76 

18 183.31±7.0 0.34 15 20 0.55 
19 183.31±4.5 0.39 15 - - 

20 183.31±3.0 0.48 15 19 0.68 
21 183.31±1.8 0.49 15 - - 

22 183.31±1.0 0.62 15 18 0.98 
 

# Center frequencies for channels 16 and 17 are 89 and 157 GHz respectively. 

*Integration times for ATMS channels 1-16 are one ninth those of AMSU. 

+AMSU resolution at nadir is 50 km below 60 GHz ad 15 km otherwise.  
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Table II: Logistic regression coefficients of the weather  model 

Variable Estimate Std. Err. Zstat P-value 

Cthick 0.000634 1E-05 -43.52 <0.0001 

Hum1 0.032457 3E-05 25.19 <0.0001 

Hum3 -0.005273 9E-04 35.95 <0.0001 

V2 0.584000 8E-04 -6.601 <0.0001 

V3 -0.717000 6E-05 10.22 <0.0001 

Hum 0.027847 6E-05 -11.41 <0.0001 

Intercept -6.380459 0.002 17.24 <0.0001 

 

Table III. Performance statistics of the weather, satellite and the hybrid snowfall detection model 

Model/Statistics FAR POD Overall Heidke 
Weather1 0.17 0.72 0.79 0.55 
Weather2 0.12 0.62 0.78 0.52 

1 Threshold probability = 0.5 
2 Threshold probability = 0.6 
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Table IV. Performance statistics of the satellite and the hybrid snowfall detection model for a threshold 
probability = 0.5 

Model/Statistics FAR POD Overall Heidke 
Satellite 0.18 0.41 0.70 0.23 
Hybrid 0.11 0.52 0.75 0.44 

 

This article is protected by copyright. All rights reserved.




